Advancing EU ecosystem extent accounts based on **Copernicus and in situ data sets**

EU ecosystem extent accounts - overview

- EEA has developed ecosystem extent accounts at EU and country level based on Corine Land Cover (CLC) for the years 2000 – 2018 in 3 tiers of increasing detail: (<u>https://doi.org/10.1016/j.ecoser.2022.101457</u>)
- These achieve an ecosystem type sub-division of 23 ecosystem categories in Tier II and 30 sub- categories in Tier III, respectively.
- New EU-level technical guidance on SEEA EA extent accounts proposes a much finer ecological sub-division at level 2 (46 sub-types) and level 3 (137 sub-types).
- Such ecologically detailed ecosystem divisions cannot be developed by available land cover or field survey data alone -> we thus need to develop & combine both.
- EEA has sponsored work to explore methodological options in that context (see Mucher et al., id 150); this presentation reviews policy context and further plans.

Information needs of EU Green New Deal on ecosystems

- The EU Biodiversity strategy to 2030 and the proposal for an EU Nature Restoration Law set *inter alia* policy objectives at the level of habitats (e.g. beech forest, medit. oak forest, mountain fir forest) in- & outside protected areas
- Extent accounts at the level of broad ecosystem types (e.g. 'Forest' or 'Grassland') do not support such requirements, hence EU guidance proposes a much higher ecological sub-division via voluntary ecosystem type levels 2 and 3
- This guidance is linked to the EU implementation of SEEA EA and combines the IUCN Global Ecosystem Typology and the European habitat classification system EUNIS in a pragmatic manner. It is currently undergoing testing.
- Developing ecosystem extent accounts at a high level of ecosystem sub-division & in a geo-spatial data system would allow direct input from ecosystem accounts to the tracking of EU policy targets (at EU and national level).

From ecosystem accounts towards habitat mapping

From ecosystem accounts

krea in km ^r					MAESECO	SYSTEM THP	65				
	1 Urben	2 Cropland	3 Gressland	4 Forest	5 Heathland and shrub	6 Sparsely vegetated land	7 Inland wetlandb	II Rivers and Takes	9 Marine Inlets and transitional waters	Total	 Combining sate & in situ data
conystem extent 2000	233,996	2,626,581	648,231	2,011,666	214,303	350,307	129,560	140,596	23,458	5,854,788	α in situ uutu
aductions to initial ecosystem extent :	1,961	11,114	1,615	41,536	1,812	2,462	642	117	63	70,565	- Using AL 8.
Additions to initial ecosystem extent	8,475	6,712	1,755	49,579	828	1,985	147	505	99	70,545	 Using AI &
let changes to ecosystem extent additions - reductions)	+6,514	-443	-1,800	+1,043	+ 958	- 477	- 455	+ 668	+36		modelling
Net change as % of initial extent	28%	4.2%	0.3%	0.1%	-0.3%	4.1%	-0.4%	0.5N	0.1%		a Utilicina bia da
otal turnover of ecosystam extent reductions + additions)	10,416	17,846	5,290	10,115	2,638	4,447	700	1,102	162	141,129	 Utilising big da
otal turnover as % of initial entent	4.5%	0.9%	0.0%	4.9%	0.9%	13%	0.6%	0.9%	0.5%	2.4%	approaches
kable ecorystem stock	212,015	2,015,446	644,596	1,961,129	202,571	10,16	124,926	140,279	29,316	5,784,223	
Kof ecosystem stock	99.2%	99.54	99.86	97.6%	99.4%	99.74	99.5%	99.1%	9.04	98.8%	
congitem extent 2006	240,510	3 493 454	6 45 454	3.443.300	1045 545	349 636	129,073	141,265	20.414	E 464 744	

to

geo-spatial data on ecosystem distribution in accounts + maps

EEA ecosystem type 'map' v3.1

From 9 MAES ecosystem types to 46 level 2 types, 137 level 3 types, and 200+ EUNIS types in future?

European Environment Agence

Next steps to integrate habitat mapping in ecosystem accounting

EEA plans for work in the coming years:

- 1. Continue work towards wall-to-wall EUNIS habitat mapping based on EEA sponsored pilot work in 2022
- 2. Seek cooperation with ESA, Eurostat and other EU players in support of EU habitat mapping & ecosystem accounting
- Create a working group to exchange experiences gathered at national level with (satellite-based) habitat mapping (with Biodiversa+ research partnership)
- Invest further in compiling auxiliary and in-situ data for validation and enhancement (from national and European data sources)
- 5. Understand which methods and data sources work best for which habitat types (e.g. retain field survey approach for some complex habitat types?)

Elements for habitat mapping:

- Habitat modelling (incl. AI)
- Remote sensing (Copernicus)
- In situ and mapping data
- Country-level experience
- Shared habitat classification and geo-spatial database

<u>Challenges for accounting:</u>

- Regular, comparable time series
- Combining different data types in GIS operation
- Computing power for big data work & geo-spatial referencing

6

Thank you for your attention.

Jan-Erik.Petersen@eea.europa.eu

