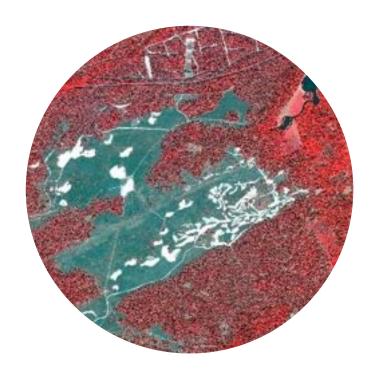
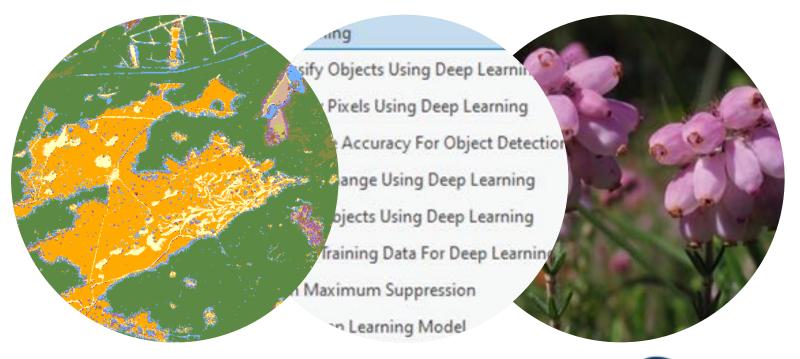
Modelling and Mapping Habitats at European and Regional Scale using AI/ML techniques

EO4EA 2022 Workshop on Earth Observation For Ecosystem Accounting, 29 of November 2022

Sander Mucher¹; Stephan Hennekens¹; Bruno Smets²; Sara Simoussi³; Henk Kramer¹; Rob Knapen¹; Marcel Buchhorn²; Wilfried Thuiller³; Kristof Vantricht²; Stan Los¹ 1 Wageningen University and Research, Netherlands; 2 VITO, Belgium; 3 CNRS, France





Background

- Background is the latest assessment by the EEA (The European environment state and outlook 2020) shows that Europe's biodiversity continues to decline at an alarming rate, with most protected species and habitats found not to have a good conservation status.
- Much more effort is needed to reverse current trends and to ensure resilient and healthy nature.
- The EU's biodiversity strategy for 2030 is a comprehensive, ambitious and long-term plan to protect nature and reverse the degradation of ecosystems.

Background & objectives

- Artificial Intelligence (AI) techniques, such as Machine Learning (ML) and Neural Networks (NN) or Deep Learning (DL) methods could enable an improved monitoring of biodiversity and ecosystems with satellite based high-resolution datasets such as Copernicus High Resolution Vegetation Phenology Product (HR-VPP) to better support European policy making.
- So, understanding where habitats occur across Europe is a crucial element for understanding biodiversity conservation and taking specific actions
- Our overall objective to exploit AI / deep learning classification methods for habitat mapping WENR wants

Habitat mapping strategy

Two approaches:

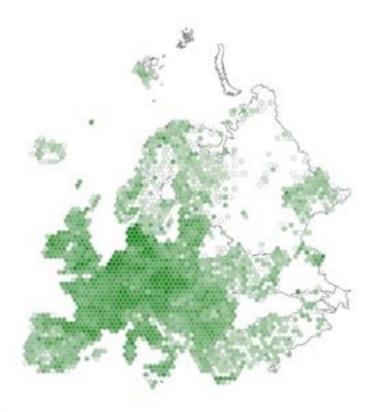
- **1. European** habitat suitability modelling at 100 meter resolution by using RS-enabled EBVs and other bioclimatic layers as predictors in BIOMOD2 (e.g. MAXENT, Maximum Entropy) model trained by exploiting *in situ* vegetation plot data from the European Vegetation Archive (EVA, http://euroveg.org/eva-database)
- 2. Regional habitat mapping using deep learning techniques at 10 or 20 meter resolution

In both approaches training data from the EVA database plays a central role

Method 1 European habitat modelling

■ Input for the modelling are 1,2M vegetation plot observations (derived from the European Vegetation Archive (EVA database) covering ~203 EUNIS habitats.

- The Maxent model for each habitat type is executed using a selection of 22 predictors (comprising 5 climate parameters, 7 soil, 2 terrain parameters, 7 RS-EBVs and 1 topography parameter).
- For the habitat modelling open source software <u>Maxent</u> <u>version 3.4.1</u> is used, by applying a machine-learning technique called Maximum Entropy Modelling.
- We did run MAXENT model to create European habitat suitability maps at 100 meter resolution for most EUNIS habitat types at level 3 (203 EUNIS classes)



European Predictors used

Group	Predictor description	INI
Climate	Annual precipitation (mm yr-1)	1
	Growing degree days heat sum above 5°C (gdd5)	2
	Accumulated precipitation amount on growing season days TREELIM (gsp)	3
	Mean temperature of the growing season TREELIM (gst)	4
	Snow covered days (scd)	5
Elevation	EU DEM	6
Lievation	EU DEM slope	7
HR-VPP	VPP - Season amplitude given by MAXV-MINV	8
	VPP - Length of season (number of days between start and end)	9
	VPP - Slope of the green-up season (<i>PP I</i> \times <i>day</i> -1)	10
	VPP - PPI at the day of maximum-of-season	11
Inundation	Inundation - occurrence	12
Land cover	Corine Land Cover	13
	World cover	14
Soil	Soil - bulk density	15
	Soil - cation exchange capacity	16
	Soil - course fractions	17
	Soil - clay fraction	18
	Soil - pH	19
	Soil - sand fraction	20
	Soil - organic carbon	21
Topography	Distance to inland water	22

Example result Maxent for S41 Wet heath

In total 203 European habitat suitability maps for most EUNIS habitat types

Distribution data (in-situ)

Thresholded suitability map



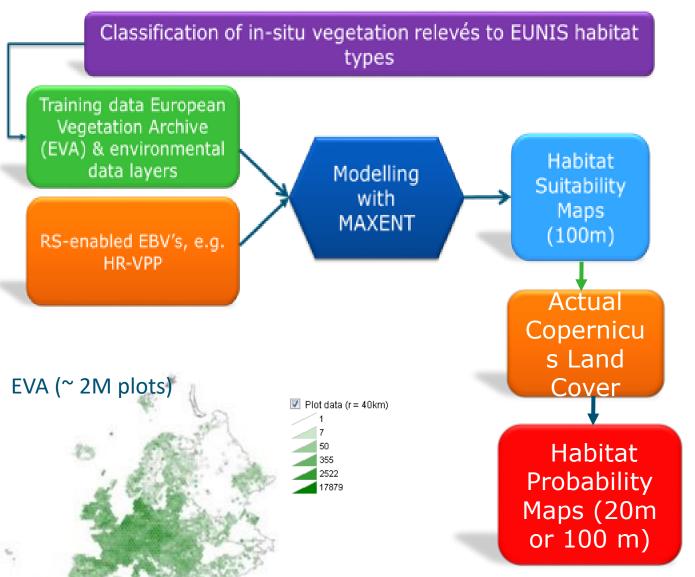
Statistics from Maxent modelling

AUC training (0-1)	
AUC test (0-1)	
10 percentile training presence threshold (0-1)	
Contribution variables to the Maxent model (%)	

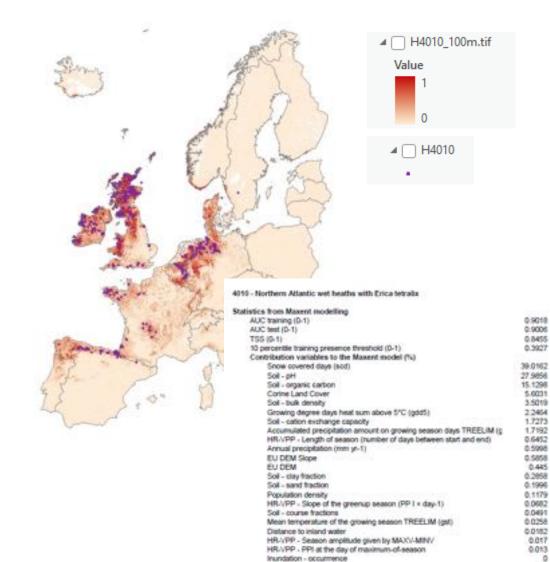
variables to the Maxent model (%)	
Climate - Snow covered days (scd)	30.63
Soil - pH	29.7015
Corine Land Cover 2018	10.8223
Climate - Accumulated precipitation amount on growing s	8.8832
EU DEM	7.2818
Climate - Growing degree days heat sum above 5°C (gdc	4.3854
Soil - clay fraction	3.2767
Soil - course fractions	1.372
Soil - bulk density	1.0599
EU DEM Slope	0.9925
Soil - organic carbon	0.5874
HR-VPP - PPI at the day of maximum-of-season	0.4623
Climate - Annual precipitation (mm yr-1)	0.1383
Soil - sand fraction	0.0971
Climate - Mean temperature of the growing season TREE	0.0879
HR-VPP - Slope of the greenup season (PP I × day-1)	0.0831
Soil - cation exchange capacity	0.0458
HR-VPP - Length of season (number of days between sta	0.0426
Population density 2018	0.0418
HR-VPP - Season amplitude given by MAXV-MINV	0.0065
Distance to inland water	0.002

0.8679

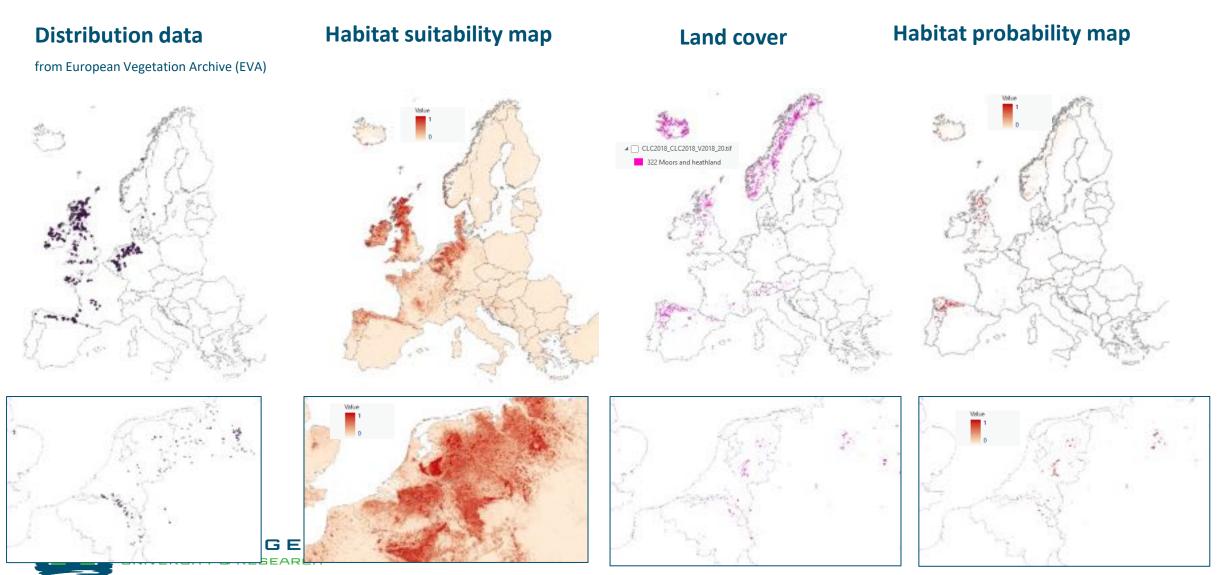
Flowchart European habitat modelling



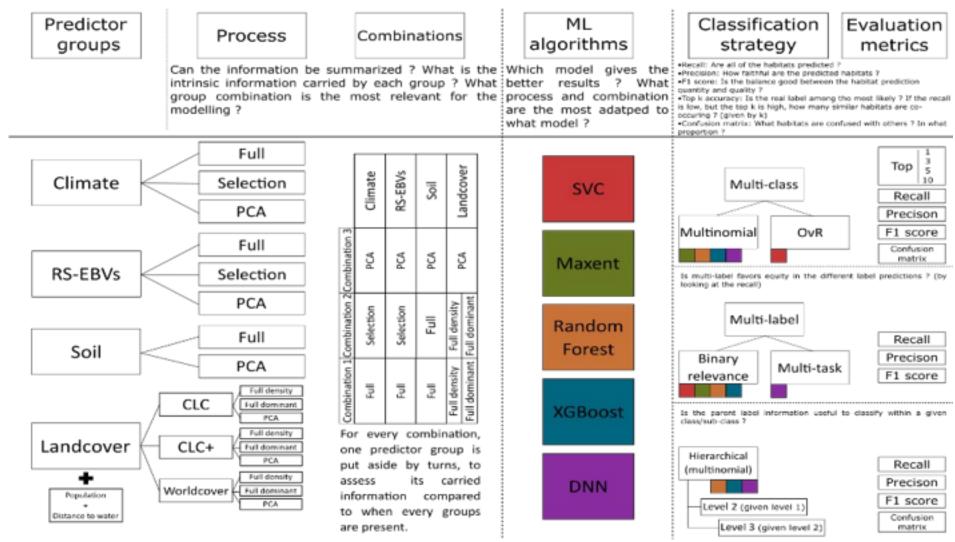
Suitability map H4010: Northern Atlantic wet heaths with *Erica tetralix & distribution data (training)*



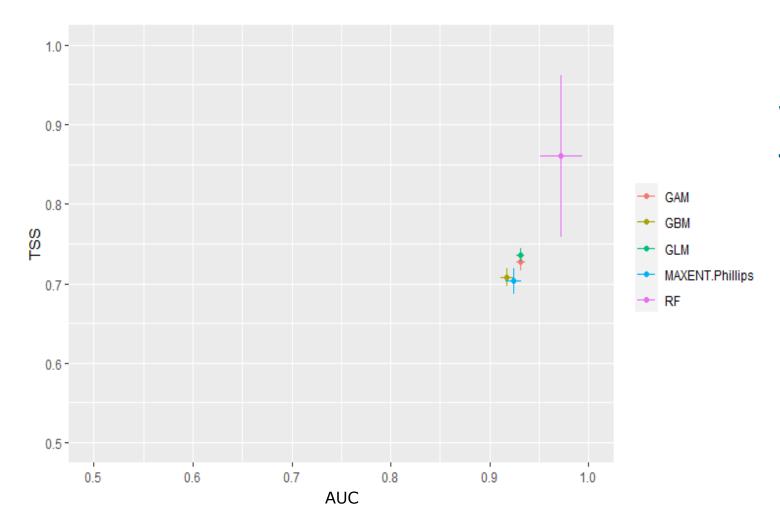
Example European habitat modelling: S41 Wet heath



ML strategy



Differences in accuracy models from BIOMOD2



Random Forest performs
with best accuracy, but
takes too much time to run
(> 200 hours single
model). Maxent model only
model possible to run at
European scale

Figure Accuracy assessment for the different methods for habitat suitability modelling with same set of training data and set of predictors at 100 meter resolution. AUC = Accuracy Under the Curve. TSS = True Skill Statistics.

Validation of European habitat suitability maps using Article 17 database

Code	Description	Nr EVA	Overall	User's	Producer's		
7420		plots		accuracy	accuracy	error	error
	Blanket bog Acidophilous Picea forests of the montane to alpine levels (Vaccinio-Piceetea)	822 11042		0.48 0.49	0.80 0.91	0.52 0.51	0.20
	Mountain hay meadows	4618			0.66	0.60	0.34
4060	Alpine and Boreal heaths	9435	0.92	0.49	0.62	0.51	0.38
1510	Mediterranean salt steppes (Limonietalia)	312	0.91	0.09	0.69	0.91	0.31
2190	Humid dune slacks	3988	0.91	0.13	0.71	0.87	0.29
5120	Mountain Cytisus purgans formations	616	0.89	0.06	0.81	0.94	0.19
1310	Salicornia and other annuals colonizing mud and sand	17773	0.88	0.21	0.81	0.79	0.19
6230a	Species-rich Nardus grasslands, on silicious substrates in mountain areas (narrow sel)	1314	0.87	0.55	0.27	0.45	0.73
2130	Fixed coastal dunes with herbaceous vegetation (grey dunes)	8927	0.85	0.16	0.83	0.84	0.17
4010	Northern Atlantic wet heaths with Erica tetralix	2081	0.83	0.20	0.93	0.80	0.07
9110	Luzulo-Fagetum beech forests	2906	0.79	0.39	0.72	0.61	0.28
6230b	Species-rich Nardus grasslands, on silicious substrates in mountain areas (broad sel)	10828	0.76	0.33	0.78	0.67	0.22
9180	Tilio-Acerion forests of slopes, screes and ravines	6541	0.68	0.31	0.79	0.69	0.21
3230	Alpine rivers and their ligneous vegetation with Myricaria germanica	554	0.67	0.02	0.98	0.98	0.02
3240	Alpine rivers and their ligneous vegetation with Salix elaeagnos	2343	0.64	0.08	0.99	0.92	0.01
6410	Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae)	8220	0.56	0.29	0.80	0.71	0.20
7110	Active raised bogs	3640	0.54	0.18	0.96	0.82	0.04
6210	Semi-natural dry grasslands and scrubland facies on calcareous substrates	646	0.48	0.29	0.91	0.71	0.09
8210	Calcareous rocky slopes with chasmophytic vegetation	2018	0.43	0.19	0.86	0.81	0.14
8160	Medio-European calcareous scree of hill and montane levels	827	0.42	0.03	1.00	0.97	0.00
8220	Siliceous rocky slopes with chasmophytic vegetation	526	0.38	0.18	0.57	0.82	0.43.2
5130	Juniperus communis formations on heaths or calcareous grasslands	879	0.35	0.07	0.95	0.93	0.05

Integration European habitat suitability maps towards wall-to-wall mapping

Overlay all habitat suitability maps for a specific habitat group (in this case forests) and extract habitat types with highest suitability (python scripts)

Forest types with the highest suitability per pixel (Max1_Foresttypes)

Forest types with the second best suitability score per pixel (Max2_Foresttypes)

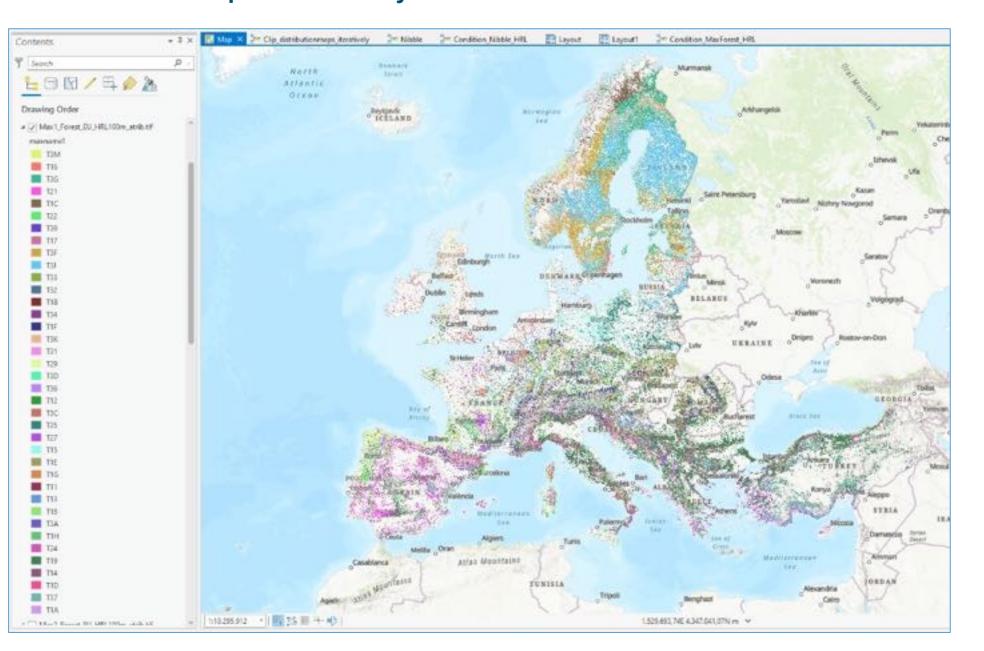
Forest types with the third best suitability score per pixel (Max3_Foresttypes)

the Copernicus HR ixel layer Forest (EEA)

Clip the integrated EUNIS Forest habitat map (level 3) with the highest suitability with the Copernicus HR layer

Clipped forest types with the second best suitability score per pixel (Max2_Foresttypes)

EUNIS Forest habitat map (level 3) with the highest suitability score for forest habitats clipped with the Copernicus HR layer Forest.

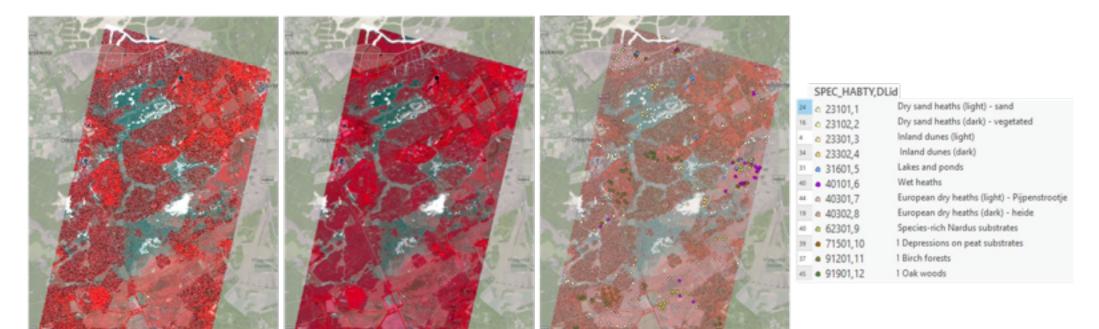


Integration: EUNIS Forest habitat map (level 3) with the second best suitability score for forest habitats clipped with the Copernicus HR layer Forest.



Method 2 Regional habitat mapping using deep learning techniques

 WENR & VITO are working on exploitation deeplearning models for habitat mapping at regional and national scale. For example in National Park Veluwe, the Netherlands, using HR-VPP and Sentinel-2 at 10 meter resolution (next to Superview)



view പ്.പ്രാം - ഉട്ടെ RESEARCS entinel 31-07-2020, False

colour

Method 2a Deep Learning (U-NET in ArcGIS PRO)

Step 1 Prepare Training Data

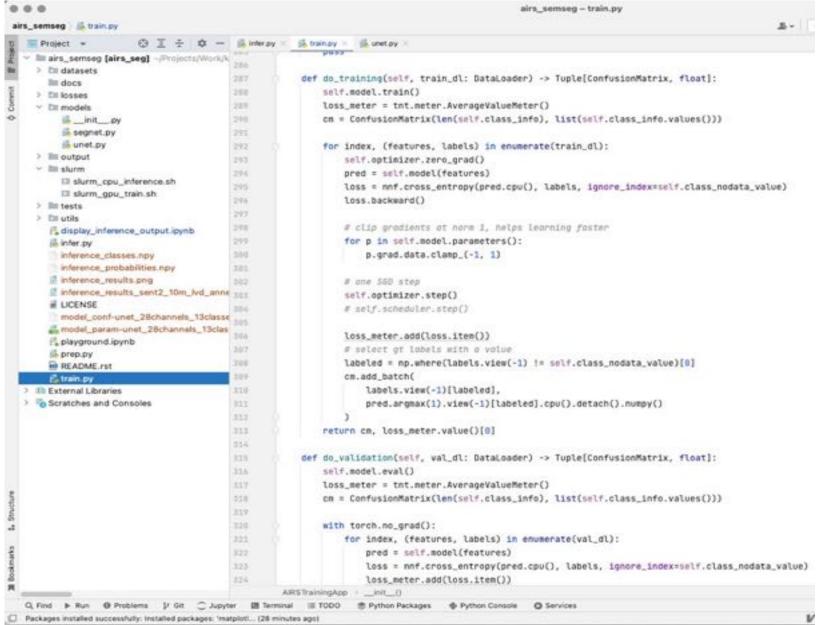
Step 2 Train a Model

Step 3 Use the Model

 Export Training Data For Deep Learning 		0
Parameters Environments		(2)
Input Raster		
20200812_SV_HV_clip_v2_UTM31N.bif	*	2
Additional Input Raster		
Output Folder		
E-\2022\KBA\\DLproces\DLtraingsData\SV20200812_DLid		38
Input Feature Class Or Classified Raster Or Table		
LVD_AnnexI_Spec_habtype_20220119		7
Class Value Field	- 10	
DLid		-
Buffer Radius		2
Input Mask Polygons		
		9
Image Format		
TFF format		
Tile Size X		256
Tile Size Y		256
Stride X		64
Stride Y		-64
Rotation Angle		0
Reference System		
Map space		
Utput No Feature Tiles		
Metadata Format		
Classified Tiles		7

\bigcirc	Classify Pixels Usi	ng Deep Learning	\oplus
Parame	ters Environments		?
Input R	Raster		
202008	812_SV_HV_clip_v2_UTM31N.tif	•	
<u> </u>	t Classified Raster		
202008	812_SV_HV_clip_v2_UTM31N_UN	etClass_DLid.tif	
Model	Definition		
E:\202	2\KBAI\DLproces\DLModels\SV2	20200812_UNet_DLid\SV20200812_UI	
Argum	ents		
Name		Value	
pa	dding	56	
ba	tch_size	4	
pr	edict_background	True	
tile	e_size	224	

Method 2b Deep Learning in Pytorch with U-NET

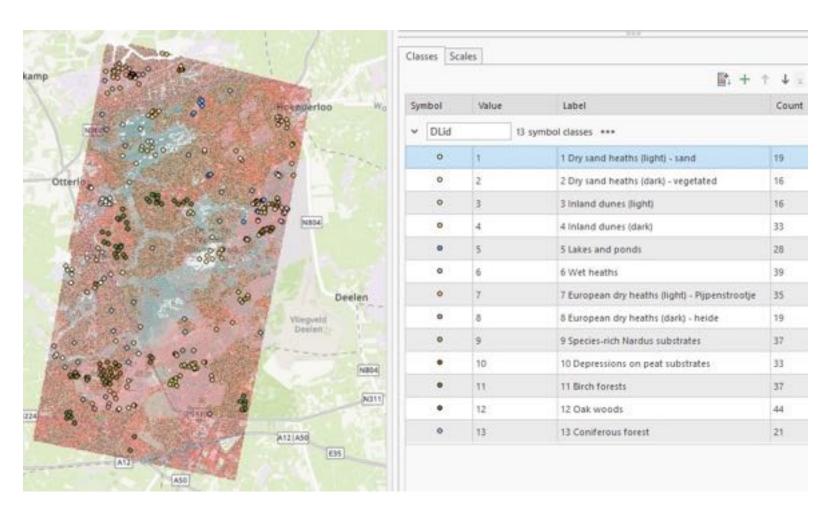


PyTorch and TorchVision based

- Steps:
 - prep.py: Create HDF5 tensor inputs
 - train.py: Train DL model
 - infer.py: Apply DL model
- Training needs GPUs, can be done on Anunna HPC or Cloud, e.g. Azure.
- Choice of DL models, starting with regular U-Net.
- Various Remote Sensing data:
 - Sentinel 2 (10-20m)
 - SuperView (50 cm)

Deep Learning proces in ArcGIS PRO

Selected training points for Deep Learning process from Landelijke Vegetatie Database (LVD)



Habitat types Dry sands heaths (2310), Inland dunes (2330) and European dry heaths (4030) were divided into two subclasses each because for these three habitat types both light and dark appearances in the satellite image can be seen.

All training points were checked on their class and geometric validity and edited if necessary. Additional points for Inland dunes (light) were digitized because there were only four points available from the LVD.

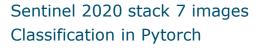
U-NET deep learning technique

Groundtruth habitat map

Result U-Net in ArcGIS Pro Result U-Net in Pytorch

Habitat map

Sentinel 2020 stack 7 images 07-02 07-05 14-09 23-03 26-06 15-04 31-07



Habitat type

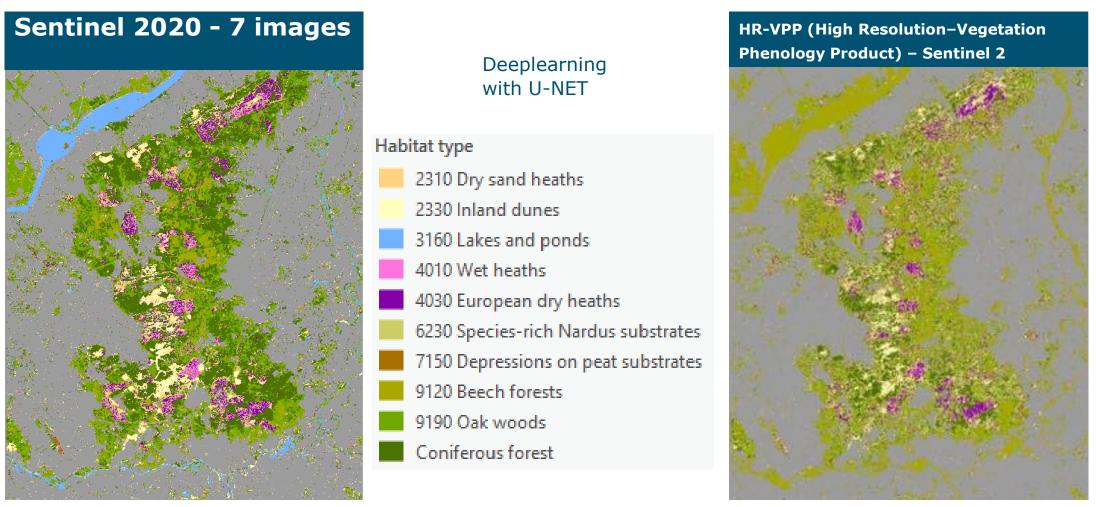
2310 Dry sand heaths 2330 Inland dunes 3160 Lakes and ponds 4010 Wet heaths 4030 European dry heaths

> 9120 Beech forests 9190 Oak woods Coniferous forest

6230 Species-rich Nardus substrates 7150 Depressions on peat substrates

KB-DDHT-2 AI for Remote Sensing

Upscaling trained DL model subset Hoge Veluwe to classification entire Veluwe using



Validation

		classificati	on result	t										
LDV training points											s		producer	
	HABITATTYP	2310	2330	3160	4010	4030	6230	7150	9120	9190	forest	total	accuracy	
dry sand and heaths	2310	23	5		1	1	5					35	66%	
inland dunes	2330	3	42		1		2	1				49	86%	
lakes and ponds	3160			26	1			1				28	93%	
wet heaths	4010	1			27	7		4				39	69%	
european dry heaths	4030	1			4	40	9					54	74%	
species-rich nardus substrates	6230				3	5	28			1		37	76%	
depression on peat substrates	7150				10	2		21				33	64%	
beech forest	9120								34	3		37	92%	
oak woods	9190						1		1	42		44	95%	
coniferous forest	13										21	21	100%	
	Grand total	28	47	26	47	55	45	27	35	46	21	377		
	user													overall
	accuracy	82%	89%	100%	57%	73%	62%	78%	97%	91%	100%		81%	accuracy

Conclusions & discussion

- We can model the suitability for 203 EUNIS habitats with Maxent model across Europe with reasonable results
- Validation of European habitat maps show in general high overall accuracies, but is mainly due to a large amount of true negatives.
- To improve the user accuracy it is necessary to refine the European habitat suitability maps with accurate land cover maps.
- Integration of the individual European habitat suitability maps for wall-to-wall mapping could also be improved by using a multiclass ML approach.
- With deep learning techniques on satellite imagery we are able to map European habitats at regional scale using both our own Pytorch scripts as well with ArcGIS Pro. But there is still much room for improvements.
- But upscaling with DL techniques requires much of data infrastructure and CPU en GPU capacity.
- and needs to be exploited further

Results & conclusions

- But upscaling with DL techniques requires much of data infrastructure and CPU en GPU capacity.
- Habitat mapping with deep learning techniques on remote sensing imagery is the future and needs to be exploited further
- Amount and quality of training data is crucial. Much time goes in the enhancement of training data.
- Selection of vegetation plot data (from e.g. EVA) for training AI/ML is more difficult than often thought – due to inaccuracies in locations
- Enhancement of the training data is a crucial step that needs much attention !!

Thank you for your attention

Contact person sander.mucher@wur.nl

