EO 4 Ecosystem Accounting 2022

Mapping Ecosystem Physical Accounts to Support Agrienvironmental Monitoring

Roxanne S. Lorilla, Georgios Giannarakis, Vasileios Sitokonstantinou, Charalampos Kontoes BEYOND Operational Unit | IAASARS| National Observatory of Athens, Greece

01 December 2022

💳 💶 🖶 💳 🔚 📕 🚝 🔚 📕 🚍 📲 🔚 🔤 🚛 🚰 🛁 📲 👫 💶 🖬 🔤 🔤 🔤 🚱 🔸 THE EUROPEAN SPACE AGENCY

Motivation

The new Common Agricultural Policy - CAP (2023-2027)

Council adopts fairer, greener and more performance-based farming policy

The Council has formally adopted the new common agricultural policy (CAP) which will apply for the period 2023-2027.

The new CAP seeks to:

- enhance the contribution of agriculture to **EU environmental and climate goals**
- provide more targeted support to smaller farms
- allow greater **flexibility** for member states in adapting measures to local conditions

The three regulations that make up the CAP reform package were signed by both the Council and the Parliament and were published in the Official Journal on 6 December 2021. The new policy will apply in full in 2023.

Infographic - A fairer, greener and more performance based EU agricultural policy

·eesa

Motivation

CAP National Strategic Plans

EU FUNDING RESERVED FOR	In EUR
Young farmers (generational renewal)	53 757 114
Environmental and climate objectives under rural d	levelopment 299 592 938
Eco-schemes under direct payments	438 138 578
LEADER	49 724 133
Complementary redistributive income support	153 704 160

EU FUNDING RESERVED FOR		In EUR	
Young farmers (generational renewal)		35 158 587	
Environmental and climate objectives under rural development		176 440 073	
Eco-schemes under direct payments		279 365 200	
LEADER		47 589 703	
Complementary Redistributive Income Support		50 396 468	

EU FUNDING RESERVED FOR	In EUR	EU FUNDING RESERVED FOR	In EUR
Young farmers (generation renewal)	103 357 244	Young farmers (generation renewal)	88 720 000
Environmental and climate objectives under rural develop	nent 658 267 435	Environmental and climate objectives under rural development	1 020 757 966
Eco-schemes under direct payments	679 869 223	Eco-schemes under direct payments	430 000 000
LEADER	92 204 301	LEADER	99 459 000
Complementary Redistributive Income Support	171 635 659	Complementary Redistributive Income Support	130 900 000

Aim and objectives

Scope

Showcase how integrating EO, ES Accounting and ML can contribute towards the monitoring of agri-environmental policies

EO data; Land/Climate monitoring services; National statistics

Nutrition biomass kcal parcel⁻¹ year⁻¹

Erosion control tn ha⁻¹ year⁻¹

Climate regulation g C ha⁻¹ year⁻¹

Lifecycle maintenance dimensionless

Pollination 0-1; 0 indicates lowest supply; 1 indicates highest supply)

Lower diversity

Higher diversity

+ THE EUROPEAN SPACE AGENCY

•eesa

Methodology

Data

Satellite downstream products & Land monitoring services

- NDVI, LSWI
- Agricultural Use LPIS/IACS
- Corine Land Use / Cover
- Forest type
- Riparian zones
- Inland water
- EU-DEM v1.1

Climate change services

- Precipitation
- Temperature
- Solar radiation and irradiance

Other products

- Road network
- Soil Erodibility (K- Factor)
- Floral availability (FA) and Nesting suitability (NS)
- Standard Nutritive Factors
- Crop statistics

ES indicators/proxies

Nutrition biomass Food supply (kcal parcel⁻¹ year⁻¹)

Erosion control Actual soil erosion prevention (tn ha⁻¹ year⁻¹)

Climate regulation Carbon dioxide regulation (g C ha⁻¹ year⁻¹)

Lifecycle maintenance Functional diversity (dimensionless)

Pollination Relative pollination potential (0-1; 0 indicates lowest supply; 1 indicates highest supply)

Methodology

Ecosystem services accounts at regional scale

+ THE EUROPEAN SPACE AGENCY

•eesa

Ecosystem services accounts at regional scale

•eesa

📕 🚍 🚍 🖶 🔢 🔚 🊍 🚺 🚺 🚍 🚝 🧫 🖬 🚺 🐂 🚺 💥 🚼 🖬 📟 🔤 🔤 💽 🔸 THE EUROPEAN SPACE AGENCY

Contributions of agr. management practices to ES

+ THE EUROPEAN SPACE AGENCY

•eesa

Final remarks

Conclusions

Selecting **relevant** to the study areas **indicators and proxies** can **ensure their use** by end-users, planners and land managers.

Providing **spatial explicit information** on how agricultural management practices may enhance or hinder specific ES or a set of ES **can help plan more sustainable and resilient agriculture**.

There are major advances in the use of EO in mapping agricultural accounts but their **integration into planning and decision-making is still lacking**.

·eesa

Roxanne S. Lorilla <u>rslorilla@noa.gr</u> Georgios Giannarakis Vassilis Sitokonstantinou Charalampos Kontoes

BEYOND Operational Unit | IAASARS | National Observatory of Athens, Greece